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ABSTRACT

High residual stresses develop in SCS-6/Ti-15-3 composites during cooldown
from the fabrication temperature; these residual stresses can effect the mechanical
and physical properties of the composite. Discrete fiber-matrix finite element
models were used to study the residual stresses due to the temperature change
during the fabrication process, including the effects of uneven fiber spacing, the free
surface, and increased fiber volume fractions.

To accurately model the effects of the free surface, it is only necessary to model
one fiber through the thickness. Below the first ply, the analysis predicts stress
distributions that are identical to the infinite array predictions.

For uneven fiber spacing less than 0.042 mm in an interior ply, the maximum
hoop stress was predicted to occur between fibers within a ply and increased as the |
fiber spacing decreased. The maximum hoop stress correlated well with the
observed radial cracking between fibers. For the case of touching fibers, the
analysis predicted tensile radial stresses at the fiber-matrix interface, which could
lead to fiber-matrix debonding during the fabrication cooldown. Identical trends
were predicted for uneven fiber spacing in surface plies with slightly greater values
of maximum stresses.

The analysis predicted matrix yielding to occur upon cooldown when the edge-
to-edge fiber spacing was less than or equal to 0.022 mm. The stress distributions
predicted for increasing fiber volume fractions were similar to those predicted for
decreasing the fiber spacing for two adjacent fibers in a ply.

INTRODUCTION

Metal matrix composites have several inherent properties, such as high
stiffness-to-weight ratios and high strength-to-weight ratios, which make them
attractive for advanced aerospace applications. These composites also have a

higher operating temperature range than polymer matrix composites. However, the



large differences that can exist in the coefficients of thermal expansion of the fiber
and the matrix combined with the large temperature change during the fabrication
process can lead to problems in these materials. High residual stresses can develop
in the composite during cooldown from the fabrication temperature; these residual
stresses can affect the mechanical and physical properties of the composite.

The resulting stresses may be large enough to produce matrix cracks and fiber-
matrix interfacial debonding, or plastically deform a ductile matrix. For example,
the silicon-carbide/titanium composite was found to have a substantial amount of
matrix damage in the form of radial cracks in the as-fabricated condition [1]. These
microscopic cracks were located at the shortest distance between neighboring fibers
in the same row. The amount of cracking was attributed to the effects of fiber
spacing; there was consistently more cracking between the more closely spaced
fibers within a given row. Additionally, more radial cracking was observed in the
surface plies [1].

The present analysis uses discrete fiber-matrix (DFM) models to study thermal
residual stresses in a unidirectional composite due to the temperature change
during the fabrication process. The DFM models are composed of three-
dimensional finite elements. The analysis incorporates temperature-dependent
elastic properties in both the fiber and matrix. Temperature-dependent stress-
strain behavior of the matrix is also modeled.

The effect of the free surface of the laminate on the thermal residual stresses
was studied. A model with a section containing four fibers where the top bdundary
is a free surface was used. By applying the appropriate boundary conditions, this
model represents an infinite sheet with eight plies. Models with one fiber (i.e., two
plies) and one quarter of a fiber (i.e., one ply) were used to study the effects of
laminate thickness on the thermal residual stresses.

The effects of fiber spacing on thermal residual stresses were studied. An



array of fibers was modeled to accurately account for uneven fiber spacing in
interior and surface plies. The effects of fiber spacing on yielding of the matrix
during fabrication were also examined. The change in the thermal residual
stresses due to increasing the fiber volume fraction was studied and compared with
decreasing the fiber spacing of two adjacent fibers.

BACKGROUND

The present work was done to analysis the experimental observations of [1].
Complete details of the material and experimental procedures can be found in [1].
A brief summary of the details pertinent to the present analysis is given here. The
alloy Ti-15-3, a shortened designation for Ti-15V-3Cr-3A1-3Sn, is a metastable beta
strip alloy [2]. The composite laminates were made by hot-pressing Ti-15-3 foils
between unidirectional tapes of silicon-carbide fibers held in place with Ti-6A1-4V
wire weaving. The manufacturer's designation for these silicon-carbide fibers is
SCS-6. The fiber diameter is 0.14 mm. The composite was an eight-ply
unidirectional laminate approximately 2.0 mm thick. The fiber volume fraction was
approximately 33 percent.

Polished sections taken from the center of the laminates were examined in
both the transverse and longitudinal (parallel to the fiber) directions. The edge-to-
edge fiber spacings were measured and correlated to the cracking. Particular
emphasis was placed on examination of the outermost and innermost fiber rows of
the eight-ply laminate to identify any changes in the amount or distribution of
cracks through the specimen thickness. Specimens were examined in the as-
fabricated condition and after 10,000 thermal cycles between 300°C and 550°C.
Only the thermal cycle due to the thermal cooldown occurring during the
fabrication is analyzed in the present work.

As described in [1], the fibers were found to have a fairly wide range in spacing

within the same row. The edge-to-edge fiber spacings ranged from 0.0 to 0.160 mm



within the same row, with a large percentage less than 0.020 mm. The mean fiber
spacing between fiber rows was .110 mm. Damage was observed in the as-
fabricated state as microscopic radial cracks initiating in the fiber-matrix
interphase. Specifically, the cracks were located in the outer layers of the carbon-
rich coating of the fiber and sometimes extended into the fiber-matrix reaction zone.
The results presented in [1] revealed that the most significant cracking occurred
during cooldown from consolidation. As previously mentioned, the radial cracks
developed where fibers were most closely spaced. A significant difference in the
amount of radial cracking was found in the surface and interior fiber rows. Figure
1 presents a histogram of results from [1]. Radial cracking occurred between all
fibers spaced up to 0.010 mm for the interior plies and up to 0.020 mm for the
surface plies, as shown in Figure 1. The percentage of fibers with cracks decreased
as the spacings became wider. No cracks were observed at spacings greater than
0.040 mm for the interior plies or greater than 0.060 mm for the surface plies.

Stress distributions will be presented for the three normal stress components,
Gyp» Ogp» and O,,. The radial stress component G, controls interfacial or
circumferential cracking. The most obvious example of this type of cracking is
fiber-matrix debonding. The hoop stress component Ggqg controls radial cracking
such as was observed in [1]. The axial stress component G,, governs axial or
transverse cracking. Although no damage other than radial cracking was seen in
the as-fabricated composite in [1], all three residual stress components will be
presented since they may affect the subsequent behavior of the composite.

ANALYTICAL MODELING

For all analyses, discrete fiber-matrix (DFM) models assuming a rectangular
array of fibers were used. MSC/NASTRAN ([3] was used for the finite element
analysis. Three dimensional, eight-noded hexahedral elements were used in the

analysis. The ply thickness (0.25 mm), the fiber volume fraction (33%), and the



fiber diameter (0.14 mm) from [1] were used to calculate the spacing for uniformly
spaced fibers. From these dimensions, the edge-to-edge fiber spacing for a uniform
array is calculated to be 0.052 mm. The uniformly spaced array was used as the
reference case.

The temperature was assumed to be uniform throughout the laminate. Since
the most significant cracking was observed during cooldown from consolidation,
only the thermal cycle occurring during the fabrication process is analyzed in the
present work. Thermal residual stresses were calculated assuming a temperature
change of -538°C; this temperature change is approximately one half of the melting
point of the Ti-15-3 matrix. At absolute temperatures greater than one half the
melting point of the matrix, it was assumed that any residual stresses that

| developed during fabrication of the composite would be relieved due to relaxation
[2]. The temperature-dependent constituent elastic properties [4] used are given in
Table 1. The matrix properties are given for the as-fabricated material (i.e., no heat
treatment). No attempt was made to include any fiber-matrix interface layers or
matrix reaction zone in the finite element model. A perfect bond between the fiber
and the matrix was assumed. The tabulated values for the temperature-dependent
matrix stress-strain curves [4] are given in Table 2. The fiber was assumed to
remain elastic. All analyses assumed material nonlinearity to allow matrix
yielding. Yielding of the matrix was predicted by comparing the von Mises
equivalent stress to the room temperature yield stress (689.48 MPa [4]). When the
von Mises equivalent stress was greater than or equal to the yield stress, yielding of
the matrix was assumed. The von Mises equivalent stress Oym is defined as

follows:

ovm=\/o§+cr3*03-6x0y*Gsz-Gzax+3(T§y+T§z+’f§x)



Laminate Thickness Models

Four DFM models were used to examine the effect of laminate thickness on the
thermal residual stresses due to the fabrication process. All DFM models were
defined assuming one layer of fibers in each ply of the laminate. A DFM model
with one quarter of a fiber and the surrounding matrix was used as the basic
building block. Figure 2(a) shows the dimensions of the unit cell for the fiber
volume fraction of 33%. The model shown in Figure 2(a) was used with the
appropriate boundary conditions to represent a single fiber in an infinite array of
fibers and to represent a unidirectional, one-ply lamina. For the single fiber in an
infinite array, compatibility with adjacent unit cells was enforced on each face of
the model by constraining all normal displacements to be equal. For the one-ply
lamina, the top surface (y = 0.125 mm) was modeled as a free boundary (i.e., no
constraints were used) and compatibility with adjacent unit cells was enforced on
each of the other faces of the model by constraining all normal displacements to be
equal. A model with one fiber (Figure 2(b)) was used represent a laminate with two
plies. A model containing four fibers (Figure 2(c)) was used to model a
unidirectional composite with eight plies. For reference, the fibers are labeled from
1 to 4. For both Figures 2(b) and 2(c), the top surface was modeled as a free
boundary (i.e., no constraints were used) and compatibility with adjacent unit cells
was enforced on each of the other faces of the model by constraining the normal
displacement to be equal.

Fiber Spacing Models

Two different fiber spacing models were developed. The first model
represented an infinite array of fibers with uneven fiber spacing. This model was
designed to represent the interior plies. The second model represented the same
fiber spacings in a surface ply.

Infinite Array Model. - A model with twelve fibers is shown in Figure 3. For



reference, the fibers are labeled from 1 to 12. The array of fibers and the model
dimensions used for the reference case of uniform spacing (S1 =89 =0.052 mm) are
shown in the figure. To model different spacings, fibers 6 and 7 were shifted
towards each other by equal but varying amounts. The values of S; and Sy used
are given in Table 3. Consistent with the experimental observations [1], the
distance between fibers in each ply t, was kept constant (t; =.110 mm). By
shifting fibers 6 and 7 towards each other, the edge-to-edge fiber spacing was varied
from .078 mm to 0.0 mm. S; varied form 0.052 mm to 0.0 mm while Sy, varied from
0.052 mm to 0.078 mm. For clarity, stress distributions will be presented only for
the area located between Fibers 6 and 7 indicated by the dashed line in Figure 3.

Surface Ply Model. - An array of eight fibers was used to model uneven fiber
spacing in the surface ply. Figure 4 shows the array of fibers and model dimensions
used for the reference case of uniform spacing. The fibers are labeled from 1 to 8,
and as before, Fibers 6 and 7, now in the surface ply, were shifted by varying
amounts to model different fiber spacings. The top surface was modeied as a free
boundary (i.e., no constraints were imposed). The normal displacements on each of
the other faces were constrained to be equal.

Models for Increasing Fiber Volume Fraction -

To model increasing vy, only one quarter of the fiber and the surrounding
matrix were modeled (Figure 2(a)). The distance between plies was held constant
and the spacing between the fibers was decreased from the reference case, S;=
0.052 mm. In the fabrication of metal matrix composites using the foil-fiber-foil
technique, constant thickness foils are usually used and one method of increasing
the fiber volume is decreasing the fiber spacing. Six values of the fiber volume
fraction were used. Starting with the reference value of v¢ of 33%, it was assumed
that only increasing values of v¢ would be of interest. For the fiber spacings of 0.0,

0.012, 0.022, 0.032, 0.042, and 0.052 mm, the corresponding values of vrare 44, 41,
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38, 36, 34, and 33%.
RESULTS AND DISCUSSION

The analytical results are presented as stress contour plots for the matrix only.
The calculated fiber stresses (G, Ggg, and 0,,) due to the thermal load were
compressive, and thus, are not presented here. In the stress contour plots, the
areas represented by the fibers are shown as blanks. All matrix stresses are plotted
with respect to a cylindrical coordinate system, as shown in Figure 2, with the
origin at the center of the fiber.

Free Surface Effects

The thermal residual stresses in the matrix due to the fabrication process (AT
= -538°C) were determined for the models defined in Figure 2. All six stress
components predicted for the eight-ply model (Figure 2(c)) were identical around
fibers 2 through 4 and the stresses predicted around fibers 2 through 4 of the eight-
ply model were identical to the stresses predicted for the infinite array model. The
stresses predicted around the surface fiber (fiber 1) were identical to the stresses
predicted for the two-ply model (Figure 2(b)). The stresses predicted for the upper
half of the two-ply model (Figure 2(c)) were identical to those predicted for the one-
ply model. However, the stresses predicted for the lower half of the two-ply model
(Figure 2(c)) were not identical to the stresses predicted for the infinite array. The
stress distributions were very similar, but not identical. Thus, to account for the
free surface in a unidirectional composite, it is necessary to model a two-ply
laminate (a single fiber), as shown in Figure 2(c).

To quantify the effect of the free surface, the stress contours for the two-ply
model and the infinite array model will be compared in detail. The G, stresses in
the matrix for the two-ply and infinite array models are presented in Figures 5 and
6, respectively. The radial stresses in the two-ply model near the upper surface of

the model are smaller than in the infinite array model. This difference is due to the



free surface boundary condition used in the two-ply model. As the centerline of the

fiber (8 = 0°) is approached, the two solution become nearly identical. The presence
of the free surface relieves the thermal residual stress in the surface ply. Since the
compressive O thermal residual stress would have to be overcome by a mechanical
load to cause interfacial failure, surface plies could experience interfacial failure
earlier in the loading history.

The Ogg stresses in the matrix for the two-ply and infinite array models are
presented in Figures 7 and 8, respectively. The Ogg stresses are tensile throughout
the matrix for both models. The Gy stresses are, in general, larger for the two-ply
model. Along the x-axis (where the fibers are closest together) the stress is slightly

greater (1%) for the two-ply model. For these two cases with uniform fiber spacing,

the maximum value of the Ggq stress is not found at 6 = 0°. For the two-ply model
(Figure 7), the peak value of Ggg occurs in the fiber-matrix interface region, over a
range of 0 from 90° to approximately 45°. For the infinite array case (Figure 8), the
peak value of Ggg also occurs at the fiber-matrix interface near 0 = 45°. These
predictions seem to contradict the experimental observations that radial cracking
always occurred between fibers in a ply (i.e., at 0 = 0°). However, no cracking was
observed for the fiber spacing used in these models (S1 = 0.052 mm); thus, the
maximum stress was obviously not large enough to cause cracking at this spacing.
Other fiber spacings will be discussed in a later section.

The G, stresses in the matrix for the two-ply and infinite array models are
presented in Figures 9 and 10, respectively. For 0 < 300, the stresses are very
similar for the two models, although slightly larger for the two-ply model. Near the
upper surface, the two-ply model predicts ©,, stresses that are 2 to 8% greater than
the infinite array model and the maximum value of the O, stress in the two-ply
model is predicted at the free surface. This seems to contradict intuition; a free

surface should cause a lower stress than a plane that is constrained. However, in



this case, intuition is misleading. For the inﬁhite array model, the G,, stress is
maximum along a radial line at approximately 45° and above this line, the 0,
stress is nearly constant for the infinite array. Below this 45° line, the G, stress
decreases in both models. The constraint provided by the fiber causes the G,, stress
to decrease. In the infinite array model, the presence of another fiber above would
have the same effect on the G, stresses. In the two-ply model, there is no fiber
above, thus, no constraining effect and the 0,, stresses are greater with a free
surface.

Effects of Uneven Fiber Spacing
Interior Plies

The Oy, Ogg, and O, stress contours for the edge-to-edge fiber spacings using
the model shown in Figure 3 are presented in Figures 11, 12 and 13, respectively.
In this model, Fibers 6 and 7 are shifted by varying amounts to represent uneven
fiber spacing within an interior ply. The stresses around each fiber are defined
with respect to a cylindrical coordinate system whose origin is located at the center
of that fiber. As indicated in Figure 3, stress contours are shown only for part of
the area between Fibers 6 and 7. Thus, stress contours are presented for Sy
ranging from 0.052 mm to 0.0 mm. This was done for clarity. Stress values for the
larger fiber spacings, Sg ranging from 0.052 mm to 0.078 mm, are presented in a
later section.

The O, stress contours for decreasing edge-to-edge fiber spacings are
presented in Figure 11. Note that in this and subsequent figures, different stress
levels are used in each contour plot. Figure 11(a) presents the G, stress contours
for the reference case of uniform fiber spacing (S = Sg = 0.052 mm). As Sy, the

edge-to-edge fiber spacing of Fibers 6 and 7, decreases, the maximum compressive

radial stresses between the two fibers (0 = 0°) becomes more compressive. The G,

stress at the fiber-matrix interface near 0 = 45° decreases slightly with decreasing
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fiber spacing. However, the stresses are still compressive for all spacings greater
than 0.0 mm, indicating that no interfacial failure would occur due to the thermal
cycle. However, for the case of touching fibers (Fig. 11()), the radial stresses are
tensile on part of the fiber-matrix interface near 0 = 45°, Depending upon the
strength of the interface region, the closer fiber spacing could lead to earlier failures
of the fiber-matrix interface when mechanical loadings were applied. If the
interface were weak enough, the interface could fail upon thermal cooldown if fibers
were touching.

The Gy stress contours for decreasing edge-to-edge fiber spacings are
presented in Figure 12, Figure 12(a) presents the Ogg stress contours for the
reference case of uniform fiber spacing. The Opp stresses are tensile throughout the
matrix for all edge-to-edge fiber spacings. For S1 2 0.042 mm, the maximum Cgo
stresses occur in the fiber-matrix interface region near the top of the fiber, at 0 =
90° and between each fiber at 0 = 0°, there is a zone of relatively large Opg stresses
connecting each fiber. For S; > 0.42 mm (Figs. 12(a) and (b)), the stress at 0 = 0° is
within 10% of the maximum. As S decreases, the maximum stress is now
predicted between the two fibers at 6 = 0°. For spacings less than 0.42 mm (Figs.
12(c), (d) and (e)), the Ggg stress is maximum at 0 = 0°. For a spacing of zero (Fig.
12(f), the maximum value of Ggg does not occur exactly at 8 = 0° since there is no
matrix material there, but in the matrix material slightly above the point where the
fibers touch. These predictions seem to contradict the experimental observations
that radial cracking always occurred between fibers in a ply (i.e., at 6 = 0°),
However, no cracking was observed for the fiber spacings greater than 0.040 mm
(see Fig. 1 or [1]); thus, the maximum stress was obviously not large enough to
cause cracking for spacings greater than 0.040 mm. For spacings less than 0.042

mm, the analysis predicted that the maximum hoop stress was between the fibers

and increased as the fiber spacing decreased. The calculated value of Ogg at 0 = 0°
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increased by 55% over the range of fiber spacing analyzed. Thus, the predicted
maximum hoop stress correlates well with the observed cracking.

The ©,, stress contours for decreasing edge-to-edge fiber spacings are
presented in Figure 13. Figure 13(a) presents the G,, stress contours for the
reference case of uniform fiber spacing. For all spacings the maximum G, stresses
occur at 0 = 45° As S; decreases, the magnitude of the maximum G,, stress
increases by 22%. The minimum value of the 0,, stress occurs between the most .
closely spaced fibers within a ply (0 = 0°), and as the fiber spacing decreases, the
minimum value of G,, decreases.

Surface Ply

The ©,,, Ogg, and G, stress contours for various edge-to-edge fiber spacings in
a surface ply (Figure 4) were also predicted. As before, Fibers 6 and 7 are shifted
by varying amounts to represent uneven fiber spacing. In this case, the upper
surface of the model represents a free surface. All stress components were
calculated with respect to the cylindrical coordinate system as defined in Figure 2.
The stresses around each fiber are defined with respect to a cylindrical coordinate
system whose origin is located at the center of that fiber.

The trends in the G, stress contours for decreasing edge-to-edge fiber spacings
in the surface ply were identical to those shown previously for the interior plies.
The maximum (compressive) values of the radial stress for the surface and interior
plies are presented in Figure 14. As shown, the predicted trends are identical for
the surface and interior plies and the maximum O, stresses were elevated in the
surface ply slightly (less than 5%) for Sy less than 0.032 mm.

The trends in the Ggg stress contours for decreasing edge-to-edge fiber spacings
in the surface ply were similar to those shown previously for the interior plies. The
maximum values of the hoop stress at 0 = 0° for the surface and interior plies are

presented in Figure 15. As shown, the predicted trends are similar for the surface
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and interior plies. Decreasing the fiber spacing from the reference case (S1=0.052
mm) to the case of touching fibers (S; = 0.0 mm) produced a 88% increase in the
maximum Ggg stress. For spacings greater than 0.042 mm, the maximum Ogp
stress is predicted in the interior ply; for spacing less than 0.042 mm, the maximum
Ogg stress is predicted in the surface ply. However, for all spacings, the free surface
changed the maximum Gyg stress by less than 5%. Obviously, the predicted effect
of the free surface is not large and, thus, may not account for the increase in
cracking observed in the surface plies.

The trends in the G, stress contours for decreasing edge-to-edge fiber spacings
in the surface ply were similar to those shown previously for the interior plies. The
maximum values of the axial stress for the surface and interior plies are presented
in Figure 16. As shown, the predicted trends are similar for the surface and
interior plies. Decreasing the fiber spacing from the reference case (S7 =0.052

mm) to the case of touching fibers (S = 0.0 mm) produced a 16% increase in the

maximum G,, stress. For all spacings, the free surface increased the maximum Oy
stress by less than 5%.
Matrix Yielding

The von Mises equivalent stress was calculated to determine matrix yielding.
No yielding was predicted for spacings greater than or equal to 0.032 mm. Figure
17 shows the matrix yield patterns for S; = 0.022, 0.012 and 0.0 mm for the interior
plies. With the closer fiber spacings, the analysis predicts the matrix will yield in
the area between the fibers due to the thermal cooldown in the fabrication process.
The yield patterns predicted for the surface ply were nearly identical to thdse
predicted for the interior plies and, thus, are not shown. |
Effects of Increasing Fiber Volume Fraction

Increasing the fiber volume fraction, which is equivalent to decreasing fche

fiber spacing for all fibers in the composite, had the same effects as decreasing the
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fiber spacing between two adjacent fibers only. The Oy, stresses in the matrix at
the fiber matrix interface are shown in Figure 18. As the fiber volume fraction |
increases, the stresses between the fibers become more compressive. The stress
near the top of the fiber (0 = 90°) decreases slightly in magnitude with increasing
v. However, the stresses are still compressive for all values of v¢ except for vg =
44% (touching fibers), indicating that no interfacial failure would occur due to the
thermal cycle. For the case of touching fibers, the radial stresses are tensile on part
of the fiber-matrix interface, from 0 = 32° to 58°. Depending upon the strength of
the interface region, the closer fiber spacing could lead to fiber-matrix debonding
during the fabrication process and earlier failures of the fiber-matrix interface
when mechanical loadings are applied.

The Oy stress values predicted between the fibers within a ply for increasing
fiber volume fractions are shown in Figure 19. The Ogq stresses are tensile
throughout the matrix for all fiber volume fractions. For v¢ < 34%, the maximum
stresses occur in the fiber-matrix interface region near the top of the fiber, at 0 =
90° and there is a zone of relatively large Gy stresses between each fiber at 6 = 0°.
For v¢ < 34%, the stress at 0 = 0° is within 11% of the maximum. As vgincreases,
the maximum stress is now predicted between two fibers (6 = 0°).- For v¢ greater
than 34%, the Ggg stress is maximum at 0 =0° For vp=44% (touéhing fibers), the
maximum value of Ggg does not occur at 8 = 0°, but slightly above the point where
the fibers touch. The values of Ggg at 8 = 0° for increasing v¢ (solid circles) are
shown in Figure 19. The values of Ggg predicted for the decreasing fiber spacings
for the interior (open circles) and surface plies (open squares) are also shown in
Figure 19. For comparison, all stresses are plotted as a function of the fiber spacing
and the appropriate fiber volume fractions are shown in parentheses. Less than a

5% difference was predicted for the three cases.

The trend in the ,, stresses predicted for increasing fiber volume fractions

14



was similar to that predicted for the decreasing fiber spacings. For all values of \{3
the maximum G, stresses occur at 6 = 45% as the fiber volume fraction increases,
the magnitude of the maximum G,, stress increased. However, the increase in the
maximum G,, stresses predicted for the increasing fiber volume fractions is
significantly larger than that predicted for the decreasing fiber spacings. For
comparison, the maximum G,, stresses predicted for increasing fiber volume
fraction (solid circles) and for the interior (open circles) and surface plies (open
squares) are shown in Figure 20. All stresses are plotted as a function of the fiber
spacing and the appropriate fiber volume fractions are shown in parentheses. The
maximum value of G,, changed by 26% due to increasing the fiber volume fraction,
compared to a change of 16% for the decreased fiber spacing in both interior and
surface plies).

Material manufacturers may desire an increased fiber volume fraction to
obtain higher strength composites. These results, however, indicate that an
increasing v¢ may lead to problems; damage may occur during the fabrication
process if the fibers are too closely spaced. Even if no damage occurs during the
processing, the thermal residual stresses developed may significantly affect the
subsequent mechanical behavior of the composite.

CONCLUSIONS

High residual stresses develop in SCS-6/Ti-15-3 composites during cooldown
from the fabrication temperature; these residual stresses can affect the mechanical
and physical properties of the composite. Discrete fiber-matrix (DFM) finite
element models were used to study the residual stresses due to the temperature
change during the fabrication process. The analysis incorporated temperature-
dependent elastic properties in both the fiber and matrix. Temperature-dependent
stress-strain behavior of the matrix was also modeled.

The following conclusions were made for thermal loading of a unidirectional
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SCS-6/Ti-15-3 composite:

. To accurately model the effects of the free surface, it is only necessary to model
one fiber through the thickness. Below the first ply, the analysis predicts results
that are identical to the infinite array results. The free surface slightly reduced the
radial stresses at the fiber-matrix interface which could lead to fiber-matrix
debonding at lower load levels upon subsequent mechanical loading.

For uneven fiber spacing in an interior ply less than 0.042 mm, the maximum
hoop stress was predicted to occur between fibers within a ply and increased as the
fiber spacing decreased. The maximum hoop stress between fibers within a ply
correlated well with the observed radial cracking between fibers for interior plies
[1]. For the case of touching fibers, the analysis predicted tensile radial stresses at
the fiber-matrix interface. Depending on the fiber-matrix interface strength, fiber-
matrix debonding could occur during the fabrication cooldown. For all spacings the
maximum G, stress occurred at 6 = 45° and increased as the fiber spacing
decreased. Identical trends were predicted for uneven fiber spacing in surface plies
with slightly greater values of peak stresses.

The analysis predicted matrix yielding to occur upon cooldown when the edge-
to-edge fiber spacing was less than or equal to 0.022 mm. A small area of matrix
material between the most closely spaced fibers was predicted to yield.

Increasing fiber volume fractions were modeled using unit cells with
decreasing edge-to-edge fiber spacing, while the ply-to-ply fiber spacing was held
constant. The results predicted for increasing fiber volume fractions were similar to
the results predicted for decreasing the fiber spacing between two adjacent fibers in
a ply. A greater increase in the axial stress component was predicted for increasing
fiber volume fraction than for decreasing fiber spacing between adjacent fibers.
The results indicate that matrix cracking and fiber-matrix debonding are more

likely to occur during processing for laminates with higher fiber volume fractions.
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The results presented here indicate that significant increases in stresses may
occur during the fabrication process when the fibers are too closely spaced. Even if
no damage occurs during the processing, the thermal residual stresses developed
may affect the subsequent mechanical behavior of the composite and, thus, these

effects should be understood and quantified.
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Table 1 - Temperature-Dependent Constituent Properties For SCS-6/Ti-15-3 [4]

Elastic Properties for Ti-15-3 Matrix (as-fabricated)

Temp E ) o
°C Pa mm/mm/°C
21.11 9.239E10 .36 8.208E-6
204.44 9.239E10 .36 8.946E-6
426.67 8.481E10 .36 9.504E-6
537.78 5.861E10 .36 9.756E-6

Elastic Properties for SCS-6 Fiber

Temp E \V) o
°c Pa mm/mm/°C

21.11 3.93E11 25 3.564E-6

93.33 3.90E11 25 3.564E-6
204.44 3.86E11 25 3.618E-6
315.56 3.82E11 25 3.726E-6
426.67 3.78E11 .25 3.906E-6
537.78 3.74E11 25 4.068E-6
648.89 3.70E11 .25 4.266E-6
760.00 3.65E11 .25 4.410E-6
871.11 3.61E11 25 4.572E-6

1093.30 3.54E11 25
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Table 2 - Tabulated Data for Ti-15-3 Matrix Stress-Strain Curves (as-fabricated)

Temp Strain Stress
°c mm/mm Pa
21.11 0.0 0.0
0.0076 6.8948E8
0.0082 7.4119E8
0.0088 7.8428E8
0.00594 8.2737ES8
0.0098 8.4461E8
0.0106 8.7908E8
0.0113 8.9632E8
0.0118 9.0494E8
0.0124 9.1356E8
0.0132 9.2217E8
0.0146 9.3079E8
0.0168 9.3941E8
0.0208 9.4803E8
537.78 0.0 0.0
0.0071 4.1385E8
0.0171 4.4816E8
0.0321 5.0000E8

Table 3 - Fiber Spacings

CASE S{ (mm) S; (mm)
Uniform 0.052 0.052
Spacing 1 0.042 0.057
Spacing 2 0.032 0.062
Spacing 3 0.022 0.067
Spacing 4 0.012 0.072

Touching 0.0 0.078
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